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SUMMARY 

We present a numerical procedure to eliminate internal nodes from elements designed to approximate 
incompressible flow problems. We compare six elements in academic and industrial like flow problem and 
we discuss their relative qualities. A surprising conclusion is that richer elements may behave less well than 
simple ones if a good enforcement of incompressibility is not maintained. 

KEY WORDS Incompressible Finite Elements 

INTRODUCTION 

Finite element methods are now widely used for fluid flow problems. During the last fifteen years, 
many elements have been tested more or less successfully and it is certainly not possible to 
compare all of them. Experience has however shown that only a few of them led to efficient 
computations. For two-dimensional flows and quadrilateral elements for example, the Q '-Po 
(bilinear velocity, piecewise constant pressure) and the Ql9)-P, (biquadratic velocity, piecewice 
linear pressure) are now very popular even though the first one is known to develop spurious 
pressure modes' under some circumstances. 

Mathematical analysis of elements used in fluid flow computations is centered on the inf-sup 
stability condition of Brezzi2 and Bab t i~ka .~  Recent papers4,' have pointed out that this condition 
can be obtained under quite general conditions by adding internal nodes to elements. In the 
case of discontinuous pressure, this enrichment procedure supposes that the element is already 
stable for the piecewise constant part of the pressure field. We shall make explicit in the present 
paper how these enriched elements can be implemented with only a few modifications of a 
standard code at  almost no extra cost. 

Knowing which elements are stable is not however, by far, a complete picture of the situation. 
Another important point is to get accurate results for high enough Reynolds numbers (which 
is not the same as getting numbers out of the computer). 

This paper presents numerical comparisons between elements that can be considered as 
members of a family containing at one end the Q,-Po element and at the other end, the Q',")-P, 
element. Using the technique of the first part, they can all be reduced, for computational purposes, 
to their piecewise constant analogues. Some of these elements are stable and some are not. We 
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shall try to deduce from numerical experiments some guidelines to users that should also be 
useful when building elements for three-dimensional problems. 

PRESENTATION OF THE ELEMENTS 

Six different quadrilateral elements have been tested. Among them, three are already well known, 
namely the Q1-Po, Q2-Po and QLg)-P, elements. The last three are new elements. The R2-Po 
element is a nonstandard element that has been introduced by For th6  The degrees of freedom 
are the velocities at the four vertices and the normal components of the velocity at the mid-side 
nodes. The last two, the R:-P, and Qt-P, are obtained from the Q,-Po and R2-Po 
elements, respectively, by adding an internal velocity node and by using piecewise linear pressure. 
The reader will find in Table I a complete description of all these elements. Finally, Figure 1 
shows how these elements are interconnected, an arrow between two elements meaning that the 
last one is in some sense an enriched version of the first one. 

Table I 

Constraint 
ratio on B.B. Order of 

Element D.O.F. convergence n x n mesh condition 

No 

1 
4 
- 

1 

1 
6 
- 

Yes 

Yes 

Yes 

0 Velocity node 
8 Normal velocity node 
* This convergence result holds for regular or almost regular meshes.’ 

+ Constant pressure 
@ Linear pressure 
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Figure 1 

We give in Table I the so-called constraint ratio of the elements, that is the ratio of pressure 
d.0.f. to velocity d.0.f. on an n x n mesh for large n. Although this is only indicative, a small ratio 
implies a poor enforcement of the divergence-free constraint. 

This list is obviously not exhaustive. For instance we could consider elements such as the 
Ql-Q, and the Q:-P, introduced in Reference 5. These elements are also built by adding 
an appropriate number of internal nodes in order to satisfy the Babcska-Brezzi condition. It 
is also noteworthy that the same discussion could be applied to triangular elements. In that 
case, the P:-P, element of Crouzeix and Raviart' plays essentially the same role as the Q'29)-P1 
for quadrilateral elements. 

Remark 1 

For linear pressure, we write for each element K (with centroid (2, y)). 

which is different from the standard approximation on the reference element 

along with 
P ( 2 ,  P) = a, + a,X + a,E 

P,(x, y )  = P I O F , ' ,  

on each element. In (3),  F ,  is the transformation of co-ordinates mapping the reference element 
I? onto K. These two approximations yield the same order of convergence but (1) is more 
convenient for the elimination procedure described in the next section. rn 

Remark 2 

The Ql-P, element is closely related to the 4-CST element discussed by Kikuchi' (see 
Figure 2) 

This element is built by dividing a quadrilateral into four triangles. The degrees of freedom 
for the velocity are the same as those of the Q:-P, element, and piecewise constant pressures 
are used on each triangle. However, a local chequerboard mode is present leaving only three 
independent degrees of freedom for pressure. A global chequerboard is also present on regular 
meshes, as in the Q,-Po element. The analysis of Reference 7 could probably be extended to 
this element. rn 

Figure 2 
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ELIMINATION O F  INTERNAL NODES BY A CHANGE OF SHAPE FUNCTION 

In this section, we shall show that the addition of internal nodes has only a marginal effect 
on computational cost. We shall indeed show how a modification of shape functions enables 
the user to eliminate both the velocity internal nodes and the non-constant part of the pressure 
field. To understand the idea, it will be easier to go back to the Stokes problem: 

Js2 D(u):D(v)dx - pV*vdx = f-vdx, Y V E  j* j* 
L 

(4) 

qV*udx = 0, YqEL2(Q), UEV, p€L2(Q). (5 )  

The function space V is supposed to be chosen correctly with respect to the boundary conditions 
of the problem at hand. Let us then consider the linear subspace V, of divergencefree vector 
functions. Problem (4), ( 5 )  can now be written in the equivalent form 

jQ D(u):D(v)dx = f-vdx, VVEV,. b 

if,,,, = {v/vtV, /*qV-vdx = 0, Y q t  N ] ,  

(6) 

From the numerical point of view, one could then eliminate pressure if an explicit construction 
of the discrete counterpart of V, were known. This is however in general quite intricate to find 
and we refer the reader to References 10 and 11 for details. We shall follow that idea only partially. 

Let us denote by A4 the subspace in L2(Q) of piecewise constant functions and let N be its 
orthogonal complement. We can define 

(7) 

which is a subspace of V .  It is then straightforward that (4), ( 5 )  can now be written as 

We have thus reduced our problem to the case of a piecewise constant pressure field. As we 
shall see, building a basis for the discrete counterpart of Vo,,, is a simple task that will not be 
performed explicitly. Moreover, once u and p are known, one can use, if needed, equation (4) 
to recover the non constant components of pressure. 

Remark 3 

This process is closely related to static condensation, but it differs in an important way: recovery 
of the N part of p can be avoided. Computations can be performed using analogues of (8), (9) 
without the need of knowing the value of the eliminated nodes. If needed, the non-constant 
components of pressure can be computed afterwards-element by element. .I 

Let us now see how this idea can be implemented in the discrete case. If Qh denotes the space 
of discrete pressures, we can write (for discontinuous pressure approximations) 

Qh = $. N h ,  (10) 



ELEMENTS FOR VISCOUS INCOMPRESSIBLE FLOWS 91 5 

where N h  is the non-constant part of the pressure. We can also define 

For the sake of simplicity, we shall concentrate on the Q:-P, element but the procedure 
described here is completely general and works as we11 for the RZ-P, and Q$')-P, elements 
(see Remark 7). Let r h  be a partition of the domain SZ into quadrilaterals. For every KET,,, 
we can write 

10 

uh(x, Y )  1 K = aiNdx, Y ) ,  (12) 
i =  1 

where the cli and Ni denote, respectively, the degrees of freedom and shape functions associated 
with K.  (We shall assume that N, and NIo are related to the internal node). 

Remark 4 

It is more usual to write 

where $i denotes the standard shape function associated with the ith node. Equation (12) is clearly 
equivalent if we set 

As we shall see, our elimination procedure will be equivalent to modify both components of the 
Ni and thus (12) is more suitable for our purpose. 

In this particular case of the Q:-P, element, we have linear discontinuous pressure. 
Consequently, the discrete divergence-free condition can be written (see Remark l), for arbitrary 
coefficients uOK, a,, and aZK 

W 

The above equation will in turn be satisfied if 

Condition (1 6) corresponds to the discrete divergence-free condition for piecewise constant 
pressure. Moreover, (17) and (18) are the necessary and sufficient conditions for Vh to belong to 
V,,N,,. The idea is now to determine a9 and a,, in order that these last two equations are 
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automatically satisfied. Indeed, setting 

Xi = j K  (x - 2)V.Nidx, 

r 

Yi = J (y - j)V*Nidx, 
K 

and integrating by parts, we easily obtain 

0 =XI, = Y,, x, = Yto, V K € Y h .  

Equations (17) and (18) may thus be rewritten as 

We finally conclude, using (12) and (22) that 

In the above equation, the sum is over 8 nodes (the internal one is eliminated). From our construc- 
tion, the (N:},", constitute a basis for Vo,Nh and it is thus possible to use the formulation (8), (9) to 
solve our problem. It must be pointed out that as N, and N,, vanish on the boundary, the 
coefficients cti remain velocity components at nodes 1 to 8. 

Remark 5 

Unlike the standard basis functions Ni, the N; have two non-zero components (they are 'true' 
vectors). At first sight, this may lead to heavy computations but as well shall see, it is not necessary 
to use them directly. 

Remark 6 

This method is particularly well adapted to the penalty technique since we are left with piecewise 
constant pressure. Moreover, the penalty factor remains exactly the same as for the Q,-P, 
element, since the shape functions N, and N,, are already divergence-fvee on average. 

Let us now show how it is possible to use our elimination method without explicitly building 
the shape functions N:. Indeed, the N: are merely linear combinations of the initial shape 
functions Ni. Consequently, let A,, be the standard elementary matrix (using one-component 
shape functions) associated with the Q:-P, element. Each element ai j  of A is of the form 

a..- cj - 4Ni7 Nj), (24) 
where a is the bilinear form associated with the variational formulation. Using the shape functions 
NI is thus equivalent to constructing a new matrix a' such that 

This can be done by post-processing, at element level, the rows and the columns of the 
matrix A. For instance, the 9th and 10th columns of A are multiplied by XJX, and YJX,, 
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respectively and the result is substracted from the ith column. The same operation is done on 
the rows (it is not important to process either the rows or columns first). Once the post-processing 
is done, the last two rows and columns can be discarded. 

We conclude from all this that only a few modifications are needed to implement our method 
in a standard Q1-Po code. One merely has to add a new shape function at the centroid of the 
reference element and to post-process on the rows and columns of the elementary matrix (the 
coefficients X i  and Yi can be computed once and for all in a pre-processing code). 

Since our method works as well for the QL9)-P, and Ri-P,  elements, from a computational 
standpoint we have reduced, respectively, (up to the cost of pre-processing) the QL9)-P, element 
to the QL8)-P0 element, the Ri-P,  element to the R,-Po element, and the Q:-Pl element 
to the Q,-Po element. As we shall see in the next section, this small extra computational cost 
may lead to a substantial gain in accuracy. 

Remark 7 

As already pointed out, this method can also be used when we have more than one internal 
node (the Q2-P2 element for instance). In such a case, the elimination of the internal nodes requires 
the solution of a small linear system on each element. Moreover, it is then necessary to use the 
analogue of equation (l), otherwise, the linear system may be singular. 

NUMERICAL RESULTS 

To illustrate our purpose, we have considered three numerical tests, each one having its particular 
difficulties. Our first problem is the Poiseuille flow, which is classical but gives rise to interesting 
conclusions; the next one, the no-flow test, was first considered by Gresho et a1.I’ This is also 
a very simple problem and here again some elements yield surprising results. Finally, we have 
considered a more realistic (industrial) problem, the cascade flow. 

The Poiseuille pow 

Let us briefly describe the problem. A parabolic velocity profile is imposed at both the inlet 
and outlet of a rectangular channel. If H is the height of the canal, then the analytic solution 
of the Navier-Stokes equations is 

- 4x + constant. 

u = {o,o) 

u = {o,ol 
Figure 3 
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We present in Figure 3 the two meshes that have been used for the finite element discretization. 
The first one is a regular 4 x 8 mesh and the other has been obtained by slightly displacing one 
point. 

In our first attempt, we have used the Q1-P, element on the regular mesh. As one can see 
in Figure 4, the results are very good for both velocity and pressure fields. 

However, on the distorted mesh, the pressure field is completely useless in that form, even 
though the velocity field is satisfactory (see Figure 4(c)). This is a visualization of an impure 
spurious pressure mode in the sense of Sani et a1.l 

We have next used the R,-Po element (which satisfies the B.B. condition) and the results are 
presented in Figure 4(e) for the pressure on the second mesh (the velocity field is very similar 
to the one for the Q,-P, element). We have also tested this element on a very distorted mesh 
and the results were still very good. 

It should be noticed that spurious pressure can be filtered but accuracy is strongly affected 
(Figure 4(f)). We refer the reader to the works of Stenberg and Pitkaranta7 for convergence 
analysis of such pathological cases. This shows that choosing an element with stable pressure 

Figure %a). Velocity field, regular mesh (QI-Po) 
element 

Figure qd). Pressure field, distorted mesh (Q,-Po) 
element 

Figurc 4(b). Pressure field, regular mesh (Q1-Po) 
element 

- I  _ _ _ - - - - -  

Figure 4(e). Pressure field, distorted mesh (R,-Po) 
element 

Fiyurc 4(c). Velocity field, distorted mesh (Q,-Po) 
element 

Figure qf). Filtered pressure field, distorted mesh 
(Q,-Po) element 
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Figure 5 “...\I 
is an advantage but is not absolutely necessary and that the QI-P, element can be used if it 
enjoys some other qualities. 

The no-jlow test’, 

On the boundary r of the domain SZ of Figure 5, we impose homogeneous boundary conditions 
u = 0 and we let f = (0, 9 )  (non-zero external forces). Here again, the analytic solution of the 
Navier-Stokes equations is known, that is 

u = o ,  p = g y + c .  (27) 
Using an 8 x 16 mesh with the Q,-P, and R, -Po elements, we get O(h) vortices illustrated 

in Figure 5. The problem here is not due to a failure in satisfying the B.B. condition but to the 
fact that we are using only piecewice constant pressure. Consequently, the linear analytic pressure 
cannot be reproduced exactly and we have a striking example of the dependency of the 
approximation of the pressure. It is clear that the cure to this is to use piecewise linear (at least) 
pressure. Indeed, the Q:-P, element passes the no-flow test remarkably well, yielding the exact 
solution for both velocity and pressure (without chequerboarding!). 

Remark 8 

One could hastily conclude from the above discussion that the Q :-PI element should give the 
exact solution for the Poiseuille flow on a distorted mesh. Unfortunately, this is not the ease since 
the velocity space V, does not contain the exact solution. Consequently, the Q:-P, element gives 
almost the same results as the Q,-P, element and the pressure remains step-wise constant (or 
almost). rn 

The cascade flow 

Our final test consists in simulating the flow between the blades of a turbomachine. For this 
problem, the velocity field is very important but the pressure field is fundamental since we are 
mostly interested in computing the head losses. Figure 6 displays the geometry and boundary 
conditions. The domain is in fact periodic and represents an infinite stack of similar domains. 
In the finite element code, periodicity is ensured by assigning the same number to degrees of 
freedom that are to be identified. They are thus taken as identicill by the assembly routine. 

In the tests performed we compare the results of various elements at different Reynolds 
numbers. It is soon apparent to anyone making such tests that variations of the parameter Re 
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u=uo 

Figure 6 

Figure 7(a). QI-Po element, Re = lo00 

\ 
Figure 7(b). Q,-Po element, Re = 1000 
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have very different effects depending on the element used. We summarize this by a concept of 
numerical diffusion defined by a purely phenomenological point of view: we say that an element 
El is more diffusive that E, if the results of El at a Reynolds number Re, are qualitatively 
similar to those of E, at a lower Reynolds number Re,. This diffusion can be traced to two 
sources, namely discretization of non-linear terms and discretization of the compressibility 
condition. We did not try to separate those closely intermixed causes. 

We have tested the six previously described elements on an 8 x 49 mesh. In the absence of 
experimental results, our criterion for comparison will be the Qi9)-P, element on a finer mesh 
(12 x 64), since this element has been shown to perform very well on various fluid flow problems. 
Figures 7-12 display the results at Re = 1000 for all these elements except the R,-Po for which we 
could not reach Reynolds numbers higher than 400 (we lost convergence of our quasi Newton- 
Raphson algorithm). Finally, Figure 13 gives the results for the Qi9)-P, element on the finer mesh. 
Let us now analyse those results in detail. First, the Q1-Po and QT-P, elements give very similar 
results. A too large stagnation region is observed on the leading edge of the blade and no vortices 
appear on the trailing edge. On a distorted mesh it is known6 that the smallest computable vortex 

Figure 8(a). Q:-P, element, Re = 1000 

Figure 8(b). QT-P, element, Re = 1000 
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Figure 9(a). R,-Po element, Re = 400 

Figure 9(b). R,-Po element, Re = 400 

Figure lO(a). Q2-P, element, Re = 1000 
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Figure 10(b). Q2-P, element, Re = 1000 

/-----. 

Figure 1 l(a). R l -P ,  element Re = 1000 

Figure 1 1(b). Rl-P,, Re = 1000 
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Figure 12(a). Q\’)-P, element, Re = 1000 

Figure 12(b). Q\’)-P, element, Re = 1000 

Figure 13(a). Q\’)-P, element, Re = 1000 (12 x 64 mesh) 
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Figure 13(b). Q$’)-P, element, Re = lo00 (12 x 64 mesh) 

Figure 15. R,I-P, element, Re = 1100 
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needs a four by four patch of elements. This relative rigidity probably accounts for the stagnation 
region. For these elements, vortices appear only at Reynolds numbers higher than 1500 (see Figure 
14); this means numerical diffusion in the above defined sense. As already pointed out, the pressure 
fields are acceptable after filtering even if some ripples remain. 

The behaviour of the Q2--Po element is also very interesting. Here again, no vortices are 
developed, even at very high Reynolds numbers. Moreover, the flow between the blades is very 
different from the results obtained by other elements. The pressure field is, in turn, far from 
being similar to the 'real' pressure field of Figure 13. The reason for this surprising behaviour 
is that the discrete incompressibility condition 

is too weak, or, in other words, this element is too compressible. The solution is thus to enforce 
this incompressibility condition. We have seen in the previous section that this can be done by 
adding an internal velocity node and by using linear pressure. We obtain in that way the 
well-known Qk9)-P, element and it should be noticed that for this particular case, we start 
from a linear converging element to achieve a quadratic converging one. The results illustrated 
in Figure 12 are of course very close to those of Figure 13. 

Let us now say a few words about the R,-P, and Rz-P, elements. First, the R,-P, element 
is very disappointing since we cannot reach high Reynolds numbers. Furthermore, some 
experiments have shown that it suffers also from a too weak incompressibility condition. In 
contrast, the Rz-P, element, which is numerically equivalent to the preceeding one, is a 
remarkably good element. It also adds numerical diffusion but much less than the Q1-Po and 
Q:-P, elements. This is illustrated in Figure 15 where the results at Re = 1100 are very similar 
to those of the Q',")-P, element at Re = 1000 (Figure 12). 

Remark 9 

The practical implementation of the R:-P, element is straightforward. One merely has to 
compute on each element the elementary matrix associated with the Q\')'-P, element and to 
post-process the rows and columns to eliminate the internal node (see the preceding section) 
and the tangential component of the velocity. 

CONCLUSION 

For a given Reynolds number, we observe large differences in the flow computed using different 
elements. In particular, numerical diffusion is more or less important depending on the element. 
Another important point is the way the discrete incompressibility condition is imposed. A too 
weak condition may lead to very poor results. The reader must be aware that obtaining results 
at high Reynolds number is not in itself a good criterion for determining if an element is good 
or not. For instance, the Qt-P, and QT-P, elements give results at very high Reynolds 
number but as we have seen, the accuracy is not satisfactory when compared to the Qi9)-P, 
element. Another important point is that enriching an element is not always valuable. For 
example, if we add four degrees of freedom to the Q,-Po element, which is an acceptable 
element, we obtain the Q2-PO element, which is too soft and much too diffusive. 

Appreciating the Q,-Po element seems to be, at least partially, a matter of point of view. 
Taking as granted that spurious pressure modes can be filtered out, our experiments show that 
this element yields results quite comparable to those of other elements. It must however be 
remarked that this element is quite diffusive (in the above defined sense) and that to obtain the 
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same accuracy near the stagnation point a much finer mesh should be used. The advantage of 
this element is its low-cost implementation and may be also the possibility of using a low-order 
Gauss integration scheme in computing the elementary mat rice^.'^ 

Adding an internal node and changing to linear pressure leads to the QT-Pl element. The 
extra cost is low but the gain is also small. We however believe that the QT-P, should replace 
the Q1-Po, for it is less sensitive to mesh distortion. 

The R,-Po and Q2-P, element are very poor elements. If we compare to the Q,-Po, the 
pressure has been stabilized but they are very sensitive to the mesh, particularly the R,-Po. 
Moreover, the discrete divergence free condition associated with these elements is also too weak 
and consequently, the results obtained are in some cases completely wrong. These are other 
examples of the fact that enriching an element does not always lead to an improvement of quality. 

Enriching the Q2-P, element yields the QL9)-Pl element. In that particular case, we gain 
an order of convergence and it is already known that we have here a very good element (probably 
the best one for two-dimensional problems). Its major drawback could be its computational 
cost but it is not so clear since a coarser mesh is sufficient toget good result. 

Finally, passing from the R,-P, to the R.j-Pl gives a remarkable improvement. We do not 
gain an order of convergence but we get results very similar to those of the Qi9)-P, element. 
This new element has, after elimination, only 12 degrees of freedom on each element and requires 
only a few modifications to a QL9)-Pl code. We thus believe that it is competitive from a 
cost-effectiveness standpoint. 

The major conclusion of this work is that adding an internal node is always worth the cost 
if one uses the elimination method described here. Interestingly, a similar discussion is true for 
three-dimensional problems. Forth6 suggested the R,-P, (3-0) element, which is a straight- 
forward generalization of the R,-P, (2-D). From our experience, we now believe that adding 
internal node(s) would give a much better element. This element could possibly compete with 
the Q,-P, (3-D) element since it can be used at a still reasonable cost. It should also be noticed 
that the QLZ7)-P1 element has been shown to be too compressible. Extrapolating from our 
results for the Q2-P, element we may believe that this softness probably leads to a large 
diffusiveness and that it will be necessary to use Q1 pressure to get accurate results with a second 
order three-dimensional element. 

ACKNOWLEDGEMENT 

This work was partly supported by NSERC (Canada) and by FCAC, (Qutbec) 

REFERENCES 

1. R. L. Sani, R. M. Gresho, R. L. Lee and D. F. Grif‘tiths, ‘The cause and cure (?) of the spurious pressures generated by 
certain FEM solutions of the incompressible Navier-Stokes equations: Part 1. Int. j .  numer. methodsfluids, 1, 17-43 
(1981). 

2. F. Brezzi, ‘On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian 

3. I. Babiiska, ‘Error bounds for finite element method’, Numer. Math., 322-333 (1971). 
4. F. Brezzi and G. Pitkaranta, ‘On the stabilization of finite element approximations of the Stokes problem’, in W. 

5. M. Fortin, and A. Fortin, ‘Newer and newer elements for incompressible flows’, in J. T. Oden (ed.), Finite Elements in 

6. M. Fortin, ‘Old and new finite elements for incompressible flow’, Int. j. numer. methodsfluids, 1, 347-364 (1981). 
7. G. Pitkaranta and R. Stenberg, ‘Error bounds for the approximation of the Stokes problem using bilinear-constant 

8. M. Crouzeix and P. A. Raviart, ‘Conforming and non-conforming finite element methods for solving the stationary 

multipliers’, RAIRO, Anal. Num., 8, (R3). 

Hackbuch (ed.), Efficient Solutions of Elliptic Systems, Frieds. Viewey 1984, pp. 11-19. 

Fluids, Vol 6, Wiley, 1984. 

elements on irregular quadrilateral meshes’, Uniuersity of Helsinki, Report MAT-A 222, 1984. 

Stokes equations’, RIARO, Anal. Num., 7, (R3), 33-76 (1973). 



928 M. FORTIN AND A. FORTIN 

9. N. Kikuchi, ‘Remarks on 4CST-elements for incompressible materials’, Computer Meth. in App.  Mech and Eng., 37, 

10. D. F. Griffiths, ‘The construction of approximately divergence-free finite elements’, in A. Aziz (ed.) The Mathematical 

11. F. Hecht, ‘Construction d‘une base d‘un Clement fini P, nonconforme &divergence nulle dans R3’, These de 3idme cycle, 

12. P. M. Gresho, R. L. Lee and R. L. Sani, ‘Further studies in equal order interpolation for Navier-Stokes’, Fifth Int. 

13. P. M. Gresho, S. T. Chan, R. L. Lee and C. D. Upson, ‘A modified finite element method for solving the time-dependent 

109-123 (1983). 

foundations of the finite element method with applications to PDE, Academic Press, 1912. 

Universitl: Pierre et Marie Curie (Paris VI), 1980. 

Symposium on Finite Elements in Flow Problems, Austin, Texas, 1984. 

incompressible Navier-Stokes equations. Part 1’, Int. j. numer. methods, fluids, 4, 557-598 (1984). 




